The trivial units property and the unique product property for torsion free groups

André Nies

2024 AMS/AustMS/NZMS joint meeting Special session on groups, actions and computations Joint with Heiko Dietrich, Melissa Lee and Marc Vinyals

I. The trivial units property

Definition

Let G be a torsion free group. Let R be a domain, i.e.,

a commutative ring with 1, and without zero divisors.

We say that G has the trivial units property for R (TUP_R) if the group ring R[G] only has the trivial units: all the units are of the form rq, where $r \in R^{\times}$ and $q \in G$.

• The group ring R[G] consists of the formal sums

 $u = \sum_{g \in G} u_g g$ with coefficients $u_g \in R$, and only finitely many non-zero. The set $\{g : u_g \neq 0\}$ is called the support of u.

Addition is "component-wise". The product is defined by (∑_{g∈G} u_gg)(∑_{h∈G} v_hh) = ∑_{r∈G} w_rr, where w_r = ∑_{gh=r} u_gv_h.
α ∈ R[G] is a unit if ∃β [αβ = βα = 1e].

Unit conjecture: the story

Unit conjecture

Every torsion-free group G satisfies TUP_R , for each domain R.

- G. Higman's in his 1940 thesis posed the unit conjecture for \mathbb{Z} .
- Kaplansky's 1956 talk and 1970 paper posed it for general domains R.
- Unit conjecture was refuted by Gardam (2020) for R[P], where P = Hantzsche-Wendt group, $R = GF_2$.
- The conjecture is now refuted for each characteristic: Murray (2021) for GF_p , $p \ge 3$, and Gardam (2023) for \mathbb{C} , all for the same group P.
- Higman's original conjecture for $R = \mathbb{Z}$ remains open.

A nontrivial unit in $GF_2[P]$ supported on radius 6 Let $R = GF_2$, the field with two elements. Let

 $P = \langle a, b \mid b^{-1}a^2b = a^{-2}, a^{-1}b^2a = b^{-2} \rangle.$

P is an extension of $\mathbb{Z}^3 \cong \langle a^2, b^2, (ab)^2 \rangle$ by $C_2 \times C_2$.

Theorem (Giles Gardam, Annals of Mathematics, 2021) There is a nontrivial unit in R[P].

- Elements of R[G] can be identified with their supports.
- Gardam expressed the existence of a nontrivial unit as a Boolean satisfiability problem, with variables for membership in the supports. Then he used a SAT solver.
- In this way he found a unit α such that α and α⁻¹ are supported on the ball around e of radius 6 in the Cayley graph of P. Both α and α⁻¹ have support of size 21.

Example of SAT solver

- Tries to find satisfying assignment to a given Boolean formula, or reports that there is none.
- SAT solver processes conjunctive normal forms. Number $n \in \mathbb{N}^+$ denotes p_n , and -n denotes $\neg p_n$.
- Each disjunction is a row, and rows are separated by 0.
- To query the CNF $(p_1 \vee \neg p_3) \land (p_2 \vee p_3 \vee \neg p_1)$, enter p cnf 3 2
 - 1 -3 0
 - $2 \ 3 \ -1 \ 0$
- Minisat answers SATISFIABLE -1 -2 -3 0, meaning that setting all variables to FALSE yields a satisfying assignment.

A nontrivial unit in $GF_2[P]$ supported on radius 4 Write \overline{x} for x^{-1} . Using the same strategy we found this unit:

$$\alpha = ababa + \sum S$$
$$\alpha^{-1} = baba + \sum S$$

where $S = \{ab, a^2, b^2, ba, a\overline{b}, b\overline{a}, \overline{a}b, \overline{a}^2, \overline{a}\overline{b}, \overline{b}a, \overline{b}\overline{a}, \overline{b}^2,$ (distance 2) $aba, ab^2, a^2\overline{b}, b^2\overline{a}, ba^2, bab, a\overline{b}a, b\overline{a}b\}.$

• α and α^{-1} are rooted trees when adjoining $\{e, a, b, \overline{a}, \overline{b}\}$.

S contains all the 12 elements of distance 2 from the root e.
 π(S) = S, and π(α) = α⁻¹ where

 $\pi \in \operatorname{Aut}(P)$ switches a and b.

The ball around e of radius 4 in Cayley graph of P has 41 elements. So there are 82 primary variables in the Boolean formula one has to satisfy.

Graphical representation of unit α with $\pi(\alpha) = \alpha^{-1}$

All nontrivial units supported on radius 4

Recall again that we are working with the Hantzsche-Wendt group

$$P = \langle a, b \mid b^{-1}a^2b = a^{-2}, a^{-1}b^2a = b^{-2} \rangle,$$

and that $R = GF_2$.

- A SAT solver also verified that only the trivial units are supported on the ball of radius 3.
- Using the AllSAT solver of Guiseppe Spallitta (Trento), we found all the 18 nontrivial units supported on the ball around e of radius 4. (We don't distinguish α and α^{-1} .)
- All units and inverses have supports of size 21.
- Several of them satisfy $\alpha^{-1} = \pi(\alpha)$, where $\pi \in \operatorname{Aut}(P)$ switches a and b.

Another nontrivial unit in $GF_2[P]$ supported on radius 4

For the inverse, replace *baba* by *abab*.

II: The unique product property

Definition (Rudin and Schneider, 1964)

A torsion free group G has the unique product property (UPP) if for any nonempty finite sets $E, F \subseteq G$, some product r in the set EF is unique: $\exists r |\{\langle x, y \rangle \in E \times F : xy = r\}| = 1.$

Every one-sided orderable group has the UPP: e.g., \mathbb{Z} , $\mathrm{UT}_3(\mathbb{Z})$. Proposition (Strownowski, 1980)

G has UPP \Rightarrow G has TUP_R for each domain R.

- Proof: Suppose $\alpha, \beta \in R[G]$ satisfy $\alpha\beta = \beta\alpha = 1$, where α, β have supports A, B with $|A|, |B| \ge 2$.
- After translations, we can assume that $e \in A \cap B$.
- Let $E = B^{-1}A$ and $F = BA^{-1}$. Verify that there is NO unique product in EF.

UPP versus TUP

The studies of the two properties are closely connected.

- While UPP \Rightarrow TUP_R, it is open whether the converse implication holds (even for a fixed domain R).
- Promislow (1988) showed that the same group $P = \langle a, b \mid b^{-1}a^{2}b = a^{-2}, a^{-1}b^{2}a = b^{-2} \rangle$ fails the UPP via sets E = F of 14 elements.
- As discussed, 32 years later, Gardam showed that UC fails over $GF_2[P]$, via support size 21.

The UPP expressed as a satisfiability problem

Given a finite set $S \subseteq G$, a satisfying truth assignment for the following formula yields sets $E, F \subseteq S$ failing the UPP.

Boolean variable a_s is true iff $s \in E$, and similarly for b_s and F.

$$\left(\bigvee_{s\in S} a_s\right) \land \left(\bigvee_{s\in S} b_s\right) \land \bigwedge_{u,v\in S} \left((a_u \land b_v) \to \bigvee_{\substack{u',v'\in S\\ u'\neq u\\ uv=u'v'}} (a_{u'} \land b_{v'}) \right)$$

To rewrite this in conjunctive normal form (CNF), introduce auxiliary variables $c_{u,v}$ and impose the constraints that $c_{u,v} \leftrightarrow (a_u \wedge b_v)$. We get the CNF formula

$$\bigwedge_{u,v\in S} \left((\neg c_{u,v} \lor a_u) \land (\neg c_{u,v} \lor a_v) \land (\neg a_u \lor \neg a_v \lor c_{u,v}) \right)$$
$$\land \quad \left(\bigvee_{s\in S} a_s\right) \land \left(\bigvee_{s\in S} b_s\right) \land \bigwedge_{u,v\in S} \left(\neg c_{u,v} \lor \bigvee_{u',v'\in S} c_{u',v'}\right).$$

December 12, 2024 12 / 17

III. Fibonacci groups

The following is a source of examples for potential failure of UPP and TUP. For $2 \le r < n$ let

$$F(r,n) = \langle x_1, \dots, x_n \mid x_i x_{i+1} \cdots x_{i+r-1} = x_{i+r} \quad (1 \le i \le n) \rangle,$$

where subscripts are understood to be modulo n such that all x_j lie in $\{x_1, \ldots, x_n\}$. A nice fact is that

$$F(2,6) = \langle x_1, \dots, x_6 \mid x_i x_{i+1} = x_{i+2} \quad (1 \le i \le 6) \rangle \cong P.$$

We are interested in $H_n := F(n-1, n)$ for even n because they are torsion-free and not left-orderable. Tietze transformations show

$$H_n = \langle x_1, \dots, x_n \mid x_1^2 = \dots = x_n^2 = w_n \rangle$$
 where $w_n = x_1 \dots x_n$.

A new group failing the UPP

Using the SAT solver Kissat, we found that F(3, 4) fails the unique product property via the sets

$$E = \{1, x_1, x_4, x_1^{-1}, x_3^{-1}, x_1^2, x_1x_3, x_1x_2^{-1}, x_1x_3^{-1}, x_1x_4^{-1}, x_2x_1, x_2x_4^{-1}, x_3x_1^{-1}, x_4x_3, x_4x_1^{-1}, x_4x_2^{-1}, x_1^{-2}, x_1^{-1}x_2^{-1}, x_3^{-1}x_4^{-1}, x_1^3, x_1^{2}x_2, x_1x_3x_2^{-1}, x_1x_4x_1^{-1}, x_1x_4^{-1}x_2^{-1}, x_2x_1x_2, x_2x_4^{-1}x_2^{-1}, x_3x_1x_2^{-1}, x_3x_4^{-1}x_1^{-1}, x_3^{-1}x_4^{-1}x_2^{-1}\}$$

$$F = \{1, x_1, x_3, x_1^{-1}, x_3^{-1}, x_4^{-1}, x_1x_3^{-1}, x_1x_4^{-1}, x_2x_1, x_2x_4, x_2x_1^{-1}, \\ x_2x_3^{-1}, x_3x_2^{-1}, x_3x_4^{-1}, x_4x_3, x_4x_2^{-1}, x_1^{-1}x_2^{-1}, \\ x_2^{-1}x_3^{-1}, x_2^{-1}x_4^{-1}, x_1^2x_3, x_1^2x_4, x_2x_1x_2, x_2x_1x_3^{-1}, x_2x_4x_1^{-1}, \\ x_2x_1^{-1}x_2^{-1}, x_2x_3^{-1}x_4^{-1}, x_2x_4^{-1}x_2^{-1}\}$$

Thus, each product in EF occurs at least twice.

Structure of F(3, 4)

Using that $F(3,4) = \langle x_1, \ldots, x_4 | x_1^2 = \ldots = x_4^2 = x_1 x_2 x_3 x_4 \rangle$, we obtained the power-conjugate presentation

 $F(3,4) = pc\langle d, b, a, c \mid d^2 = c, \ b^d = b^{-1}, \ a^d = a^{-1}, \ a^b = ac^2 \rangle.$

So F(3,4) is

- an extension of index 4 of $U = \langle b, a, c^2 \rangle \cong UT_3(\mathbb{Z});$
- d acts by inverting a and b, and $\langle d^4 \rangle$ is the centre of U.

Since the structure of F(3, 4) is so easy, there is hope that it satisfies TUP_{GF_2} . This would show that $\text{TUP}_{GF_2} \not\Rightarrow \text{UPP}$.

Zero divisors conjecture (1)

- Kaplansky's 1959 zero divisors conjecture says that R[G] has no zero divisors for any torsion free G and domain R.
- TUP_R implies that R[G] has no zero divisors. That is, if there is a zero divisor, one can produce a nontrivial unit:
- First show that there is $\gamma \in R[G]$ such that $\gamma^2 = 0$. The unit is $\alpha = 1 + \gamma$ with inverse $\alpha^{-1} = 1 - \gamma$.

left orderable \Rightarrow UPP \Rightarrow TUP_R \Rightarrow zero divisors_R

Zero divisors conjecture (2)

- The zero divisors conjecture holds for polycyclic G (Cliff, 1980)
- Using that the Heisenberg group is orderable, we have given a direct proof for F(3, 4).
- For $R = GF_2$, a unit that is an involution exists in R[G] iff R[G] has zero divisors.
- So our "almost involution" $\alpha \in R[P]^{\times}$ is as good as it gets.

We have shown that each F(n-1,n) for even $n \ge 4$ has a solvable word problem. We plan to improve this to an efficient rewriting system.

Then we will try F(5,6) as potential counterexamples to the zero divisors conjecture for $R = GF_2$.

Alan Reid pointed out that F(2, n) is hyperbolic for $n \ge 8$, and so has the no zero divisors property.